YOMEDIA
NONE

Chứng minh 70(71^9+71^8+71^7+...+71^2+72)+1 là chính phương

1-Triễn khai lũy thừa: 1-(1-3)3 (à cho mình hỏi cái này hình như dựa vào hằng đẳng thức đúng hk,nếu có thì ghi giúp mình cái hằng đẳng đó lun nha hehe)

2-chưng minh rằng số:70(719+718+717+...+712+72)+1 là 1 số chính phương

3-tìm GTLN của: A=4x-x2+3 B=x-x2 C=2x-2x2-5

4-tìm GTNN của: M=x2+y2-x+6y+10

giúp mình nhavui

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài 1:

    \(1-\left(1-3\right)^3=1+2^3=\left(1+2\right)\left(1-2+4\right)\)

    hđt: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

    Bài 3:

    a, \(A=4x-x^2=-x^2+4x\)

    \(=-\left(x^2-4x+4-4\right)\)

    \(=-\left[\left(x-2\right)^2-4\right]\)

    \(=-\left(x-2\right)^2+4\)

    Ta có: \(-\left(x-2\right)^2\le0\)

    \(\Leftrightarrow A=-\left(x-2\right)^2+4\le4\)

    Dấu " = " xảy ra khi \(-\left(x-2\right)^2=0\Leftrightarrow x=2\)

    Vậy \(MAX_A=4\) khi x = 2

    b, \(B=x-x^2=-x^2+x\)

    \(=-\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

    \(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]\)

    \(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

    Dấu " = " khi \(-\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

    Vậy \(MAX_B=\dfrac{1}{4}\) khi \(x=\dfrac{1}{2}\)

    c, \(C=2x-2x^2-5\)

    \(=-2\left(x^2-x+\dfrac{5}{2}\right)\)

    \(=-2\left(x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{9}{4}\right)\)

    \(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\right]\)

    \(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le\dfrac{-9}{2}\)

    Dấu " = " khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\)

    Vậy \(MAX_C=\dfrac{-9}{2}\) khi \(x=\dfrac{1}{2}\)

    Bài 4:

    \(M=x^2+y^2-x+6y+10\)

    \(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\left(y^2+6y+9\right)+\dfrac{3}{4}\)

    \(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

    Ta có: \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\\\left(y+3\right)^2\ge0\end{matrix}\right.\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

    \(\Leftrightarrow M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

    Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

    Vậy \(MIN_M=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2},y=-3\)

      bởi đoàn triệu vĩ 30/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON