YOMEDIA
NONE

Chứng tỏ a^2-b^2 chia hết cho 3 biết a, b nguyên tố lớn hơn 3

Cho a, b nguyên tố lớn hơn 3

Chứng tỏ a2 - b2 chia hết cho 3

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: Nếu a;b là các số nguyên tố lớn hơn 3 thì sẽ có dạng 3k+1 ;3k+2

    Dựa vào HĐT số 3 ta có:
    \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

    Nếu:

    a=3k+1;b=3k+2

    \(\left(a+b\right)\left(a-b\right)=\left(3k+1+3k+2\right)\left(3k+1-3k+2\right)=\left(6k+3\right).-1=-\left(6k+3\right)⋮3\)a=3k+2;b=3k+1

    \(\left(a+b\right)\left(a-b\right)=\left(3k+2+3k+1\right)\left(3k+2-3k-1\right)=\left(6k+3\right).1⋮3\)a=3k+1;b=3k+1

    \(\left(a+b\right)\left(a-b\right)=\left(3k+1+3k+1\right)\left(3k+1-3k-1\right)=\left(6k+2\right).0=0⋮3\)a=3k+2;b=3k+2

    \(\left(a+b\right)\left(a-b\right)=\left(3k+2+3k+2\right)\left(3k+2-3k-2\right)=\left(6k+4\right).0=0⋮3\)

    \(\Rightarrow\left(a+b\right)\left(a-b\right)⋮3\Rightarrow a^2-b^2⋮3\rightarrowđpcm\)

      bởi Đào Thị Cẩm Nhung 16/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON