YOMEDIA
NONE

Chứng minh rằng: Nếu p và \(p + 2\) là số nguyên tố lớn hơn 3 thì \(p + 1\) là hợp số

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • + Nếu p là số nguyên tố lớn hơn 3 thì p sẽ có  dạng: \(3k + 1\) hoặc \(3k + 2; k ∈ \mathbb N^*\)

    ( vì nếu \(p = 3k, k ∈\mathbb N^* ⇒ p\) là hợp số)

    + Nếu \(p = 3k + 1 \)\(⇒ p + 2 = 3k + 3=3(k+1)\, \vdots \,3; k ∈\mathbb N^* \)

    \( ⇒ p + 2 \) là hợp số

    Vậy p không thể có dạng \(3k  + 1\)

    Vậy \(p = 3k + 2 ⇒ p + 1 = 3k + 3\)\(=3(k+1)\, \vdots \,3; k ∈\mathbb N^* \) hay \(p + 1\) là hợp số.

      bởi Mai Thuy 27/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON