YOMEDIA
NONE

Từ các chữ số 1, 2, 3, 4, 5, 6, 7 lập được bao nhiêu số có 4 chữ số khác nhau và là số chẵn.

A. 360

B. 343

C. 523

D. 347

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi số cần lập là \(\overline {abc{\rm{d}}}\); a, b, c, d {1, 2, 3, 4, 5, 6, 7} và a, b, c, d khác nhau từng đôi một.

    Công việc ta cần thực hiên là lập số x = \(\overline {abc{\rm{d}}} \) thỏa mãn x là số chẵn nên d phải là chữ số chẵn. Do đó để thực hiện công việc này, ta thực hiện qua các công đoạn sau:

    + Chọn d: vì d là số chẵn nên d chỉ có thể là các số 2, 4, 6, nên có 3 cách chọn d

    + Chọn a: vì ta đã chọn d nên a chỉ có thể là một trong các số của tập {1, 2, 3, 4, 5, 6, 7}\ {a}, vậy a có 6 cách chọn.

    + Chọn b, tương tự, trừ đi a và d, có 5 cách chọn b

    + Tương tự, chọn c có 4 cách chọn.

    Vậy theo quy tắc nhân ta có: 3.6.5. 4 = 360 số chẵn

      bởi Lê Minh Hải 25/01/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON