YOMEDIA
NONE

Thực hiện giải phương trình \(f'\left( x \right) = g\left( x \right),\) biết rằng: \(f\left( x \right) = {{1 - \cos 3x} \over 3};g\left( x \right) = \left( {\cos 6x - 1} \right)\cot 3x.\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(f\left( x \right) = {{1 - \cos 3x} \over 3} \Rightarrow f'\left( x \right) = \sin 3x.\) Ta có

    \(f'\left( x \right) = g\left( x \right) \Leftrightarrow \left( {\cos 6x - 1} \right).\cot 3x = \sin 3x\) (điều kiện: \(\sin 3x \ne 0 \Leftrightarrow \cos 3x \ne  \pm 1\) )

    \(\eqalign{
    & \Leftrightarrow \left( {\cos 6x - 1} \right).\cos 3x = {\sin ^2}3x \cr 
    & \Leftrightarrow \left( {1 - 2{{\sin }^2}3x - 1} \right).\cos 3x = {\sin ^2}3x \cr 
    & \Leftrightarrow {\sin ^2}3x.\left( {2\cos 3x + 1} \right) = 0 \cr 
    & \Leftrightarrow \cos 3x = - {1 \over 2}{\rm{ }}\left( {{\rm{vì}}\,\,\sin 3x \ne 0{\rm{ }}} \right) \cr 
    & \Leftrightarrow \cos 3x = \cos {{2\pi } \over 3} \cr 
    & \Leftrightarrow 3x = \pm {{2\pi } \over 3} + k2\pi \cr 
    & \Leftrightarrow x = \pm {{2\pi } \over 9} + k{{2\pi } \over 3}{\rm{ }}\left( {k \in Z} \right). \cr} \)

      bởi Bo bo 29/04/2022
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON