YOMEDIA
NONE

Hãy tìm số điểm biểu diễn các nghiệm của phương trình sau đây \(\left| {\sin x - \cos x} \right| + 8\sin x\cos x = 1\) trên đường tròn lượng giác.

 A. \(2\)                                B. \(3\)                               C. \(1\)                               D. \(4\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Đặt \(t = \sin x - \cos x\)\(\left( { - \sqrt 2  \le t \le \sqrt 2 } \right)\) thì \({t^2} = 1 - 2\sin x\cos x\) \( \Leftrightarrow \sin x\cos x = \dfrac{{1 - {t^2}}}{2}\)

    Thay vào phương trình ta được \(\left| t \right| + 8.\dfrac{{1 - {t^2}}}{2} = 1\) \( \Leftrightarrow 2\left| t \right| + 8 - 8{t^2} = 2\) \( \Leftrightarrow 8{t^2} - 2\left| t \right| - 6 = 0\)

    \( \Leftrightarrow \left[ \begin{array}{l}\left| t \right| = 1\\\left| t \right| =  - \dfrac{3}{4}\left( {VN} \right)\end{array} \right.\) \( \Leftrightarrow t =  \pm 1\left( {TM} \right)\)

    TH1 : \(t = 1\) thì \(\sin x - \cos x = 1\) \( \Leftrightarrow \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right) = 1\) \( \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) = \dfrac{1}{{\sqrt 2 }}\)

    \( \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi \\x - \dfrac{\pi }{4} = \dfrac{{3\pi }}{4} + k2\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{\pi }{2} + k2\pi \\x = \pi  + k2\pi \end{array} \right.\)

    TH2 : \(\sin x - \cos x =  - 1\) \( \Leftrightarrow \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} \right) =  - 1\) \( \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} \right) =  - \dfrac{1}{{\sqrt 2 }}\)

    \( \Leftrightarrow \left[ \begin{array}{l}x - \dfrac{\pi }{4} =  - \dfrac{\pi }{4} + k2\pi \\x - \dfrac{\pi }{4} = \dfrac{{5\pi }}{4} + k2\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = k2\pi \\x = \dfrac{{3\pi }}{2} + k2\pi \end{array} \right.\)

    Vậy có bốn điểm biểu diễn nghiệm của phương trình trên đường tròn lượng giác.

    Chọn D.

      bởi hà trang 17/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON