YOMEDIA
NONE

Co hàm số \(f\left( x \right)\) xác định bởi: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 2}}{{x - 2}}\,\,khi\,\,x \ne 2\\2\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 2\end{array} \right.\). Xác định khẳng định sai trong các khẳng định sau đây?

A. \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = 4\)

B. \(f\left( 2 \right) = 2\)

C. Hàm số \(f\left( x \right)\) liên tục tại \(x = 2\)

D. Hàm số \(f\left( x \right)\) gián đoạn tại \(x = 2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{{x^2} - 2}}{{x - 2}} =  + \infty \)

    \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^2} - 2}}{{x - 2}} =  - \infty \)

    Do đó không tồn tại giới hạn của hàm số khi x tiến đến 2.

    Do đó hàm số \(f\left( x \right)\) gián đoạn tại \(x = 2\).

    Chọn D.

      bởi Hữu Nghĩa 18/07/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON