ON
ADMICRO
VIDEO_3D

Bài số 27 trang 234 sách bài tập Đại số 11

Bài số 27 (Sách bài tập trang 234)

Cho hàm số :

             \(f\left(x\right)=\left\{{}\begin{matrix}x^2\sin\dfrac{1}{x},\left(x\ne0\right)\\A,\left(x=0\right)\end{matrix}\right.\)

Xác định A để \(f\left(x\right)\) liên tục tại \(x=0\). Với giá trị A tìm được, hàm số có đạo hàm tại \(x=0\) không ?

Theo dõi Vi phạm
YOMEDIA

Trả lời (1)

 
 
 
  • \(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
    Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
    \(f\left(0\right)=A\).
    Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
    Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
    \(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
    Vậy hàm số có đạo hàm tại \(x=0\).

      bởi Nguyen Duc Hoang 29/10/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy

 

YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi mới

 

YOMEDIA
1=>1