YOMEDIA
NONE
  • Câu hỏi:

    Đối với phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\). Khẳng định nào dưới đây là sai?

    • A. Nếu \(\Delta ' = 0\) thì phương trình có  nghiệm là:  \({x_1} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\) ; \({x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\)
    • B. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm là: \({x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{{2a}}\)  ; \({x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{{2a}}\)
    • C. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt là: \({x_1} = \dfrac{{ - b - \sqrt \Delta  }}{{2a}}\)  ; \({x_2} = \dfrac{{ - b + \sqrt \Delta  }}{{2a}}\)
    • D. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm là \({x_1} =  - \dfrac{{b' - \sqrt {\Delta '} }}{a}\)  ; \({x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\)

    Lời giải tham khảo:

    Đáp án đúng: B

    Xét phương trình bậc hai \(a{x^2} + bx + c = 0{\rm{ }}(a \ne 0)\) với \(b = 2b'\) và biệt thức \(\Delta ' = {b^{'2}} - ac.\)

    Trường hợp 1. Nếu \(\Delta ' < 0\) thì phương trình vô nghiệm.

    Trường hợp 2. Nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

    Trường hợp 3. Nếu \(\Delta ' > 0\) thì phương trình có hai nghiệm phân biệt: \({x_{1,}}_2 =  - \dfrac{{b' \pm \sqrt {\Delta '} }}{a}\)

    Nên A, C, D đúng.

    B sai vì nếu \(\Delta ' = 0\) thì phương trình có nghiệm kép \({x_1} = {x_2} =  - \dfrac{{b'}}{a}\)

    ATNETWORK

Mã câu hỏi: 217101

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON