YOMEDIA
NONE
  • Câu hỏi:

    Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?

    • A. \({u_n} = 2017n + 2018\)
    • B. \({u_n} = {\left( { - 1} \right)^n}{\left( {\frac{{2017}}{{2018}}} \right)^n}\)
    • C. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = \frac{{{u_n}}}{{2018}},\,\,\,n = 1,\,2,\,3,\,... \end{array} \right.\)
    • D. \(\left\{ \begin{array}{l} {u_1} = 1\\ {u_{n + 1}} = 2017{u_n} + 2018 \end{array} \right.\)

    Lời giải tham khảo:

    Đáp án đúng: D

    Xét dãy số (un) trong phương án A, ta có

    \({u_{n + 1}} - {u_n} = \left[ {2017\left( {n + 1} \right) + 2018} \right] - \left( {2017n + 2018} \right) = 2017\) với mọi \(n \in N^*\).

    Vậy dãy số này là một cấp số cộng.

    Xét dãy số (un) trong phương án B, ta có

    \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{\left( { - 1} \right)}^{n + 1}}{{\left( {\frac{{2017}}{{2018}}} \right)}^{n + 1}}}}{{{{\left( { - 1} \right)}^n}{{\left( {\frac{{2017}}{{2018}}} \right)}^n}}} = - \frac{{2017}}{{2018}}\) với mọi \(n \in N^*\).

    Vậy dãy số này là một cấp số nhân.

    Xét dãy số (un) trong phương án C, ta có

    \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\frac{{{u_n}}}{{2018}}}}{{{u_n}}} = \frac{1}{{2018}}\) với mọi \(n \in N^*\).

    Vậy dãy số này là một cấp số nhân.

    Xét dãy số (un) trong phương án D, ta có

    \(\begin{array}{l} {u_{n + 1}} - {u_n} = \left( {2017{u_n} + 2018} \right) - \left( {2017{u_{n - 1}} + 2018} \right) = 2017\left( {{u_n} - {u_{n - 1}}} \right)\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {2017^2}\left( {{u_{n - 1}} - {u_{n - 2}}} \right)\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {2017^3}\left( {{u_{n - 2}} - {u_{n - 3}}} \right)\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \,...\\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {2017^{n - 1}}\left( {{u_2} - {u_1}} \right) = {2017^{n - 1}}\left[ {\left( {2017 + 2018} \right) - 1} \right] = {2.2017^n} \end{array}\)

    Vậy dãy số này không phải là cấp số cộng.

    Mặt khác, ta có

    \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{2017{u_n} + 2018}}{{{u_n}}} = 2017 + \frac{{2018}}{{{u_n}}}\).

    Tỷ số này thay đổi khi un thay đổi nên dãy (un) không là cấp số nhân.

    ATNETWORK

Mã câu hỏi: 225787

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON