-
Câu hỏi:
Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?
- A. Mạnh thu được 122 mảnh
- B. Mạnh thu được 123 mảnh
- C. Mạnh thu được 120 mảnh
- D. Mạnh thu được 121 mảnh
Lời giải tham khảo:
Đáp án đúng: D
Mỗi lần cắt một mảnh giấy thành 7 mảnh, tức là Mạnh tạo thêm 6 mảnh giấy. Do đó công thức tính số mảnh giấy theo n bước được thực hiện là Sn = 6n + 1. Ta chứng minh tính đúng đắn của công thức trên bằng phương pháp quy nạp theo n.
Bước cơ sở. Mạnh cắt mảnh giấy thành 7 mảnh, n = 1, S(1) = 6.1+1 = 7
Công thức đúng với n = 1.
Bước quy nạp: giả sử sau k bước, Mạnh nhận được số mảnh giấy là S(k) = 6k + 1
Sang bước thứ k +1, Mạnh lấy một trong số những mảnh giấy nhận được trong k bước trước và cắt thành 7 mảnh. Tức là Mạnh đã lấy đi 1 trong S(k) mảnh và thay vào đó 7 mảnh được cắt ra. Vậy tổng số mảnh giấy ở bước k + 1 là: S(k =1) = S(k) -1 + 7= S(k) + 6 = 6k + 1 + 1 = 6(k+1) +1
Vậy công thức S(n) đúng với mọi n ∈ N* . Theo công thức trên chỉ có phương án D thoả mãn vì 121 = 6.20 + 1.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tìm giới hạn \(B = \mathop {\lim }\limits_{x \to 0} \frac{{\cos \;2x - \cos \;3x}}{{x\left( {\sin \;3x\; - \sin \;4x\;} \right)}}\)
- Tìm giới hạn \(A = \mathop {\lim }\limits_{x \to 0} \frac{{1 - \cos \;2x}}{{2\sin \;\frac{{3x}}{2}}}\)
- Giá tri đúng của \(\mathop {\lim }\limits_{x \to 3} \frac{{\left| {x - 3} \right|}}{{x - 3}}\)
- \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - x + 1}}{{{x^2} - 1}}\) bằng:
- \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{\sqrt {{x^3} - {x^2}} }}{{\sqrt {x - 1} + 1 - x}}\) bằng:
- Chọn kết quả đúng của \(\mathop {\lim }\limits_{x \to {0^ - }} \left( {\frac{1}{{{x^2}}} - \frac{2}{{{x^3}}}} \right)\)
- Tìm giới hạn \(C = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} + x + 1} - 2x} \right)\)
- Tìm giới hạn \(A\; = \;\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - \sqrt[3]{{2{x^3} + x - 1}}} \right)\)
- Tính giới hạn: \(\lim \;\frac{{1 + 3 + 5 + .... + \left( {2n + 1} \right)}}{{3{n^2} + 4}}\)
- Tính giới hạn như sau (lim ;frac{{sqrt {n + 1} - 4}}{{sqrt {n + 1} + n}})
- \(\lim \;\frac{{10}}{{\sqrt {{n^4} + {n^2} + 1} }}\) bằng:
- Cho dãy số un với \({u_n} = \left( {n - 1} \right)\sqrt {\frac{{2n + 2}}{{{n^4} + {n^2} - 1}}} \). Chọn kết quả đúng của limun là:
- Giá trị của \(F = \lim \frac{{{{\left( {n - 2} \right)}^7}{{\left( {2n + 1} \right)}^3}}}{{{{\left( {{n^2} + 2} \right)}^5}}}\) bằng:
- Mạnh cầm một tờ giấy và lấy kéo cắt thành 7 mảnh sau đó nhặt một trong số bảy mảnh giấy đã cắt và lại cắt thành 7 mảnh. Mạnh cứ tiếp tục cắt như vậy. Sau một hồi, Mạnh thu lại và đếm tất cả các mảnh giấy đã cắt. Hỏi kết quả nào sau đây có thể xảy ra?
- Hãy xem trong lời giải của bài toán sau đây có bước nào bị sai? Bài toán: chứng minh rằng với mọi số nguyên dương n, mệnh đề sau đây đúng:
- Xét tính tăng giảm của các dãy số sau: \(\left\{\begin{array}{c} u_{1}=1 \\ u_{n+1}=\sqrt[3]{u_{n}^{3}+1}, n \geq 1 \end{array}\right.\)
- Xét tính bị chặn của các dãy số sau \(u_{n}=\frac{1}{1.3}+\frac{1}{3.5}+\ldots+\frac{1}{(2 n-1)(2 n+1)}\)
- Xét tính bị chặn của các dãy số sau: \(u_{n}=\frac{1}{1.3}+\frac{1}{2.4}+\ldots+\frac{1}{n \cdot(n+2)}\)
- Cho cấp số cộng thỏa \(\left\{\begin{array}{c} u_{2}-u_{3}+u_{5}=10 \\ u_{4}+u_{6}=26 \end{array}\right.\).Số hạng tổng quát của cấp số cộng là:
- Cấp số cộng thỏa (left{egin{array}{c} u_{2}-u_{3}+u_{5}=10 \ u_{4}+u_{6}=26 end{array} ight.).
- Cho cấp số cộng \(( u_n)\) thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính số hạng thứ 100 của cấp số cộng.
- Cho sấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính tổng của 15 số hạng đầu của cấp số cộng.
- Cho cấp số cộng thỏa \(\left\{\begin{array}{l} u_{5}+3 u_{3}-u_{2}=-21 \\ 3 u_{7}-2 u_{4}=-34 \end{array}\right.\). Tính \(S=u_{4}+u_{5}+\ldots+u_{30}\)
- Cho một cấp số cộng (un) có u1 = 1 và tổng 100 số hạng đầu bằng 24850. Tính \(S = \frac{1}{{u_1^{}{u_2}}} + \frac{1}{{{u_2}{u_3}}} + ... + \frac{1}{{{u_{49}}{u_{50}}}}\)
- Cho cấp số nhân \(\left( {{u_n}} \right);{u_1} = 1,q = 2\). Hỏi số 1024 là số hạng thứ mấy?
- Ta có các dãy số sau, dãy nào là cấp số nhân?
- Xác định số hạng đầu và công bội của cấp số nhân (un) có \({u_4} - {u_2} = 54\) và \({u_5} - {u_3} = 108\).
- Với mọi \(n \in N^*\), dãy số (un) nào sau đây không phải là cấp số cộng hay cấp số nhân?
- Cho hình lập phương ABCD.ABCD có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực của
- Cho hình lập phương ABCD.ABCD có cạnh bằng a. Cắt hình lập phương bởi mặt phẳng trung trực
- Với các mệnh đề sau, mệnh đề đúng là đáp án
- Cho hai mặt phẳng (P) và (Q) , a là một đường thẳng nằm trên (P). Mệnh đề nào sau đây sai?
- Với các mệnh đề, mệnh đề nào đúng?
- Cho tam giác ABC có diện tích S . Tìm giá trị của k thích hợp thỏa mãn: \(S=\frac{1}{2} \sqrt{\overline{A B}^{2} \cdot \overrightarrow{A C}^{2}-2 k(\overline{A B} \cdot \overrightarrow{A C})^{2}}\)
- Cho hai vectơ \(\vec{a}, \vec{b}\) thỏa mãn: \(|\vec{a}|=4 ;|\vec{b}|=3 ; \vec{a} \cdot \vec{b}=10\) . Xét hai vectơ \(\bar{y}=\vec{a}-\vec{b}; \quad \vec{x}=\vec{a}-2 \vec{b}\) . Gọi α là góc giữa hai vectơ \(\vec{x}, \vec{y}\). Chọn khẳng định đúng?
- Cho hình chóp S
- Chọn đáp án đúng. Cho hình chóp S
- Cho hình chóp S.ABCD có đáy ABCD là hv cạnh a. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AD, DC
- Cho hình chóp S.ABCD có đáy là hcn, \(AB = a,{\rm{ }}AC = 2a,{\rm{ }}SA\) vuông góc với mặt phẳng (ABCD).
- Cho hình chóp S.ABCD có đáy ABCD là hcn tâm I với \(AB = 2a\sqrt 3 ;BC = 2a\).