YOMEDIA
NONE
  • Câu hỏi:

    Trong thí nghiệm giao thoa sóng ở mặt nước với hai nguồn cùng pha đặt tại hai điểm \(A\) và \(B\). Biết sóng truyền trên mặt nước với bước sóng là \(\lambda \), độ dài đoạn thẳng \(AB\) là \(5,8\)\(\lambda \). Ở mặt nước, gọi \((Δ)\) là đường trung trực của \(AB\); \(M, N, P, Q\) là bốn điểm không thuộc \((Δ)\) mà phần tử nước tại bốn điểm đó đều dao động với biên độ cực đại, cùng pha với nguồn và gần \((Δ)\) nhất. Trong bốn điểm \(M, N, P, Q\) khoảng cách giữa hai điểm xa nhau nhất có giá trị là

     

    • A. \(3,86\lambda \)
    • B. \(3,14\lambda \)
    • C. \(4,05\lambda \)
    • D. \(4,46\lambda \)

    Lời giải tham khảo:

    Đáp án đúng: C

    Đáp án : C

    +  M, N, P, Q thuộc hình chữ nhật , khoảng cách gần nhất bằng độ dài đoạn MN. Ta chỉ xét điểm M.

    + M dao động với biên độ cực đại:  \({d_2} - {d_1} = k\lambda \)

    + M dao động cùng pha với nguồn: \(\left[ \begin{array}{l}\left\{ \begin{array}{l}{d_2} - {d_1} = {k_{le}}\lambda \\{d_2} + {d_1} = {n_{le}}\lambda  > 5,8\lambda \end{array} \right.\\\left\{ \begin{array}{l}{d_2} - {d_1} = {k_{chan}}\lambda \\{d_2} + {d_1} = {n_{chan}}\lambda  > 5,8\lambda \end{array} \right.\end{array} \right.\)

    + M gần Δ nhất thì \(\left[ \begin{array}{l}{d_2} - {d_1} = 1.\lambda ,{d_2} + {d_1} = 7\lambda  \to \left\{ \begin{array}{l}{d_2} = 4\lambda \\{d_1} = 3\lambda \end{array} \right.\\{d_2} - {d_1} = 2.\lambda ,{d_2} + {d_1} = 6\lambda  \to \left\{ \begin{array}{l}{d_2} = 4\lambda \\{d_1} = 2\lambda \end{array} \right.(loại)\end{array} \right.\)

    + Chọn \(\lambda \) = 1

    => \(\sqrt {{3^2} - {{(MH)}^2}}  + \sqrt {{4^2} - {{(MH)}^2}}  = 5,8 \\\to MH \approx 1,93 \\\to MQ \approx 3,86;MN \approx 1,21\\ \to MP \approx 4,05\)

    ATNETWORK

Mã câu hỏi: 466142

Loại bài: Bài tập

Chủ đề :

Môn học: Vật lý

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON