YOMEDIA
NONE
  • Câu hỏi:

    Số hạng chứa \({{x}^{12}}\) trong khai triển của nhị thức \({{\left( 2{{x}^{2}}-1 \right)}^{10}}\) là:  

    • A. \(13440{{x}^{12}}\)      
    • B. \(11240{{x}^{12}}\)   
    • C. \(-13440{{x}^{12}}\) 
    • D. \(-11240{{x}^{12}}\) 

    Lời giải tham khảo:

    Đáp án đúng: A

    \({{\left( 2{{x}^{2}}-1 \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{2}^{k}}{{x}^{2k}}{{\left( -1 \right)}^{10-k}}}\)

    Để tìm số hạng chứa \({{x}^{12}}\) ta cho số mũ của x bằng 12, tức là \(2k=12\Leftrightarrow k=6\).

    Khi đó số hạng chứa \({{x}^{12}}\) là \(C_{10}^{6}{{2}^{6}}{{x}^{12}}{{\left( -1 \right)}^{10-6}}=C_{10}^{6}{{2}^{6}}{{x}^{12}}=13440{{x}^{12}}\)

    Chọn A.

    ATNETWORK

Mã câu hỏi: 418598

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON