-
Câu hỏi:
Lớp 11B có 25 đoàn viên trong đó có 10 nam và 15 nữ. Cho ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Tính xác suất để 3 đoàn viên được chọn có 2 nam và 1 nữ.
- A. \(\frac{3}{{115}}\)
- B. \(\frac{27}{{92}}\)
- C. \(\frac{9}{{92}}\)
- D. \(\frac{7}{{920}}\)
Lời giải tham khảo:
Đáp án đúng: D
Chọn 3 đoàn viên trong 25 đoàn viên thì có C253 cách chọn, do đó ta có: n(Ω) = C253 = 2300 phần tử
Có 10 đoàn viên nam chọn 2 đoàn viên thì có C102 cách chọn; có 15 đoàn viên nữ chọn 1 nữ thì có C151 cách chọn.
Gọi A là biến cố:”3 đoàn viên được chọn có 2 nam và 1 nữ” thì số phần tử của tập A là n(A) =C102.C151=675
Vậy P(A) =(n(A))/(n(Ω))=675/2300=27/92. Chọn đáp án B
Nhận xét: học sinh thường mắc một số sai lầm khi tính:
n(A) =C102+C151=60 ⇒P(A)=3/115
n(A) = A102.A151=1350;n(Ω)=A253=13800 ⇒ P(A)=9/92
n(A) = A102+A151=105;n(Ω)=A253=13800 ⇒P(A)=7/920
Chọn đáp án D
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30. Tính xác suất để thẻ được lấy ghi số 6
- Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30. Tính xác suất để thẻ được lấy ghi số chia hết cho 5
- Một lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh. Xác suất của biến cố A:”học sinh được chọn giỏi Toán” là:
- Biết một lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán.
- Một lớp học có 40 học sinh trong đó coa 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán. Chọn ngẫu nhiên một học sinh. Xác suất của biến cố C:”học sinh được chọn không giỏi Văn và Toán” là:
- Lớp 11B có 25 đoàn viên trong đó có 10 nam và 15 nữ. Cho ngẫu nhiên 3 đoàn viên trong lớp để tham dự hội trại ngày 26 tháng 3. Tính xác suất để 3 đoàn viên được chọn có 2 nam và 1 nữ.
- Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \(\frac{1}{2}\) và \(\frac{1}{3}\). Tính xác suất của biến cố X:”cả hai xạ thủ đều bắn trúng bia”
- Một cái túi chứa 3 viên bi đỏ và 5 bi xanh, 6 viên bi vàng. Chọn ngẫu nhiên 3 viên bi. Xác suất để 3 viên bi có cả ba màu đỏ, xanh, vàng là
- Gieo 3 con súc sắc cân đối, đồng chất. Khi đó, số kết quả có thể xảy ra là:
- Gieo 3 con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện. Khi đó: Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 12 là: