-
Câu hỏi:
Gieo 3 con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện. Khi đó: Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 12 là:
- A. \(\frac{{25}}{{216}}\)
- B. \(\frac{1}{8}\)
- C. \(\frac{1}{6}\)
- D. \(\frac{1}{3}\)
Lời giải tham khảo:
Đáp án đúng: A
Gọi B là biến cố: “Tổng số chấm xuất hiện trên bề mặt 3 con súc sắc bằng 12”
Ta thấy
\(12 = 1 + 5 + 6 = 2 + 4 + 6 = 2 + 5 + 5 = 3 + 3 + 6 = 3 + 4 + 5 = 4 + 4 + 4\)
Nếu số chấm trên bề mặt 3 con súc sắc khác nhau tức là các trường hợp (1;5;6), (2;4;6), (3;4;5) có \(3!.3 = 18\) cách
Nếu số chấm trên bề mặt 3 con súc sắc có 2 con giống nhau tức là các trường hợp (2;5;5) và (3;3;6) có 3.2 = 6 cách
Nếu số chấm trên bề mặt 3 con súc sắc giống nhau ta có 1 cách gieo duy nhất
\( \Rightarrow n\left( B \right) = 18 + 6 + 1 = 25\). Vậy \(P\left( B \right) = \frac{{n\left( B \right)}}{{\Omega \left( B \right)}} = \frac{{25}}{{216}}\).
Chọn đáp án A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30.
- Lấy ngẫu nhiên 1 thẻ từ 1 hộp 30 thẻ được đánh số từ 1 đến 30. Thực hiện tính xác suất để thẻ được lấy ghi số chia hết cho 5.
- lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán.
- Ở lớp học có 40 học sinh trong đó có 15 học sinh giỏi Toán, 10 học sinh giỏi Văn và 5 học sinh giỏi cả Văn và Toán.
- Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau.
- Chọn câu đúng. Gieo 3 con súc sắc cân đối, đồng chất. Khi đó, số kết quả có thể xảy ra là:
- Chọn đáp án đúng. Gieo 3 con súc sắc cân đối, đồng chất và quan sát số chấm xuất hiện. Khi đó: Xác suất để tổng số chấm xuất hiện trên mặt ba con súc sắc bằng 12 là:
- Chọn ngẫu nhiên 5 sản phẩm trong 10 sản phẩm. Biết rằng trong 10 sản phẩm đó có 2 phế phẩm. Hãy tính xác suất để trong 5 sản phẩm được chọn có ít nhất 1 phế phẩm
- Chọn ngẫu nhiên 5 sản phẩm trong 10 sản phẩm. Biết rằng trong 10 sản phẩm đó có 2 phế phẩm.
- Có hai hộp bút chì. Hộp 1 có 3 bút đỏ và 4 bút xanh. Hộp II có 8 bút đỏ và 4 bút xanh. Chọn ngẫu nhiên từ mỗi hộp ra 1 bút. Thực hiện tính xác suất để có 1 bút đỏ và 1 bút xanh.