YOMEDIA
NONE
  • Câu hỏi:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. \(SA \bot \left( {ABCD} \right)\), SA = x. Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau góc 60o.

    • A. \(x = \frac{{3a}}{2}\)
    • B. \(x = \frac{a}{2}\)
    • C. x = a
    • D. x = 2a

    Lời giải tham khảo:

    Đáp án đúng: C

    * Trong (SAB) dựng \(AI \bot SB\) ta chứng minh được \(AI \bot \left( {SBC} \right)\) (1)

    Trong (SAD) dựng \(AJ \bot SD\) ta chứng minh được \(AJ \bot \left( {SCD} \right)\) (2)

    Từ (1) và (2) ⇒ góc \(\left( {(SBC),(SCD)} \right) = \left( {AI,AJ} \right) = \widehat {IAJ}\)

    * Ta chứng minh được AI = AJ. Do đó, nếu góc \(\widehat {IAJ} = {60^o}\) thì \(\Delta AIJ\) đều ⇒ AI = AJ = IJ

    \(\Delta SAB\) vuông tại A có AI là đường cao ⇒ AI.SB = SA.AB ⇒ \(AI = \frac{{SA.AB}}{{SB}}\) (3)

    Và có \(S{A^2} = SI.SB\) ⇒ \(SI = \frac{{S{A^2}}}{{SB}}\) (4)

    Ta chứng minh được \(IJ{\rm{//}}BD \Rightarrow \frac{{IJ}}{{BD}} = \frac{{SI}}{{SB}} \Rightarrow IJ = \frac{{SI.BD}}{{SB}} = \frac{{S{A^2}.BD}}{{S{B^2}}}\)(5)

    Thế (3)&(5) vào \(AI = IJ \Rightarrow AB = \frac{{SA.BD}}{{SB}} \Rightarrow AB.SB = SA.BD\)

    \(\Leftrightarrow a.\sqrt {{x^2} + {a^2}} = x.a\sqrt 2 \Leftrightarrow {x^2} + {a^2} = 2{x^2} \Leftrightarrow x = a\)

    ATNETWORK

Mã câu hỏi: 198410

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON