-
Câu hỏi:
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh \(AB = a; SO \bot mp\left( {ABCD} \right);SO = \frac{{a\sqrt 3 }}{2}\). Gọi I là trung điểm của cạnh CD; H là hình chiếu của O lên đường thẳng SI.
a) Chứng minh rằng:\(BD\bot (SAC)\)
b) Chứng minh rằng: \((HOD)\bot (SCD)\)
c) Tính góc giữa đường thẳng OD và mặt phẳng (SCD).
d) Trên cạnh SD, lấy điểm L sao cho LD = 2LS. Gọi M là giao điểm của SO và BL; G là trọng tâm ∆MSI. Tính khoảng cách từ điểm G đến mặt phẳng (SBC).Lời giải tham khảo:
a) ABCD là hình vuông nên \(BD\bot AC\)
\(SO\bot (ABCD)\) nên \(BD\bot SO\)
Vậy \(BD\bot (SAC)\)
b) Ta có \(OH\bot SI\) (gt)
\(CD \bot \left( {SOI} \right) \Rightarrow OH \bot CD\)
Vậy \(OH\bot (SCD)\). Suy ra \((HOD)\bot (SCD)\)
c) Gọi \(CD \bot \left( {SOI} \right) \Rightarrow OH \bot CD\)
\(OH \bot \left( {SCD} \right)\) nên \(\varphi = \widehat {ODH}\)
\(\Delta OHD:\sin \varphi = \frac{{OH}}{{OD}} = \frac{{\sqrt 6 }}{4} \Rightarrow \varphi = {\rm{arcsin}}\frac{{\sqrt 6 }}{4}\)
d) Từ gt suy ra M là trung điểm SO. Gọi N là trung điểm SI.
Vì MN // (SBC) nên \(d\left( {G;\left( {SBC} \right)} \right) = d\left( {M;\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {O;\left( {SBC} \right)} \right)\)
Gọi J là trung điểm BC. Kẻ \(K \bot SJ \Rightarrow d\left( {O;\left( {SBC} \right)} \right) = OK\)
\(\begin{array}{l}
\Delta SOJ:\frac{1}{{O{K^2}}} = \frac{1}{{O{S^2}}} + \frac{1}{{O{J^2}}} = \frac{{16}}{{3{a^2}}}\\
d\left( {G;\left( {SBC} \right)} \right) = \frac{{a\sqrt 3 }}{8}
\end{array}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Tínha) \(A = \mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} + {x^2} - 5x - 6}}{{2{x^2} + 5x + 2}}\)b) \(B = \mathop {\lim }\limi
- Xét tính liên tục của hàm số sau tại \(x_0=3\)\(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^2} - 8} - 1}}{{x
- Cho hàm số \(y = \sqrt {1 - {x^2}} \). Chứng minh rằng \(y.y + x = 0;\forall x \in \left( { - 1;1} \right)\)
- Tìm phương trình tiếp tuyến (D) của đồ thị \(\left( C \right):y = \frac{{2{x^2} - 3x + 1}}{{x + 2}}\) biết (D) vuông góc
- Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh \(AB = a; SO \bot mp\left( {ABCD} \right);SO = \frac{{a\sqrt 3 }}{2}\).