-
Câu hỏi:
Cho cấp số nhân có \({u_2} = \frac{1}{4},{u_5} = 16.\) Tìm q và u1 của cấp số nhân.
- A. \(q = - \frac{1}{2},{u_1} = - \frac{1}{2}\)
- B. \(q = - 4,{u_1} = - \frac{1}{{16}}\)
- C. \(q = \frac{1}{2},{u_1} = \frac{1}{2}\)
- D. \(q = 4,{u_1} = \frac{1}{{16}}\)
Lời giải tham khảo:
Đáp án đúng: D
\(\left\{ \begin{array}{l} {u_2} = {u_1}.q = \frac{1}{4}\\ {u_5} = {u_1}.{q^4} = 16 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} q = 4\\ u = \frac{1}{{16}} \end{array} \right.\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Chu vi của một đa giác n cạnh là 158, số đo các cạnh đa giác lập thành một cấp số cộng với công sai d = 3.
- Cho cấp số nhân có Tìm q và u1 của cấp số nhân.
- Cho một cấp số nhân có các số hạng đều không âm thỏa mãn . Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
- Cho dãy số (un) với Tính un+1?
- Cho cấp số cộng Tích ab bằng bao nhiêu?
- Trong các khẳng định sau, khẳng định nào sai?
- Cho dãy hình vuông Với mỗi số nguyên dương n, gọi và Sn lần lượt là độ dài cạnh
- Xác định số hạng đầu và công bội của cấp số nhân (un) có
- Xác định Số hạng đầu u1 và công sai d của cấp số cộng (un) có và
- Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức
- Một cấp số nhân có số hạng đầu tiên là 2 và số hạng thứ tư là 54 thì số hạng thứ 6 là
- Chu vi của một đa giác là 158 cm, số đo các cạnh của nó lập thành một cấp số cộng với công sai d = 3cm.
- Cho các số theo thứ tự lập thành một cấp số nhân. Khi đó x3 + 2003 bằng
- Cho một cấp số cộng (un) có Tìm công sai d.
- Cho cấp số cộng (un) có và công sai d = 3. Tìm số hạng u10.
- Cho một cấp số cộng có .Hỏi bằng bao nhiêu?
- Có bao nhiêu cấp số nhân có 5 số hạng? Biết rằng tổng 5 số hạng đó là 31 và tích của chúng là 1024.
- Cho cấp số cộng có công sai và đạt giá trị nhỏ nhất. Tính tổng của 100 số hạng đầu tiên của cấp số cộng đó.
- Cho cấp số nhân (un) có u1 = 2 và công bội q = 3. Tính u3
- Một cấp số nhân có số hạng đầu u1 = 3 công bội q = 2. Biết Sn = 765. Tìm n.
- Một cấp số cộng có tổng n số hạng đầu là Sn được tính theo công thức Sn = 5n2 + 3n, ().
- Cho tam giác ABC cân tại A. Biết rằng độ dài cạnh BC, trung tuyến AM và cạnh AB
- Tổng n số hạng đầu tiên của một cấp số cộng với Tìm số hạng tổng quát un của cấp số cộng đã cho.
- Bốn góc của một tứ giác tạo thành cấp số nhân và góc lớn nhất gấp 27 lần góc nhỏ nhất. Tổng của góc lớn nhất và góc bé nhất bằng
- Cho số hạng thứ m và thứ n của một cấp số nhân biết số hạng thứ (m + n) bằng A
- Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành một cấp số cộng. Biết , giá trị x + y là
- Cho và cota, cotb, cotc tạo thành cấp số cộng. Giá trị cota.cotc bằng
- Biết số nguyên tố có các chữ số theo thứ tự lần lượt lập thành cấp số nhân. Giá trị a2 +b2 +c2 là
- Cho tam giác ABC có các góc A, B, C tạo thành một cấp số nhân công bội 2.
- Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng.
- Mặt sàn tầng của một ngôi nhà cao hơn mặt sân 0,5m . Cầu thang đi từ tầng một lên tầng hai gồm 21 bậc, một bậc cao 18cm . Kí hiệu hn là độ cao của bậc thứ n so với mặt sân. Viết công thức để tìm độ cao hn ?
- Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kỹ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 13,5 triệu đồng/quý, và kể từ quý làm việc thứ hai, múc lương sẽ được tăng thêm 500.000 đồng mỗi quý. Tính tổng số tiền lương một kỹ sư nhận được sau ba năm làm việc cho công ty.
- Trên một bàn cờ có nhiều ô vuông. Người ta đặt 7 hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt dẻ nhiều hơn ô đầu tiên là 5, tiếp tục đặt vào ô thứ ba số hạt dẻ nhiều hơn ô thứ hai là 5, … và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số ô trên bàn cờ người ta đã phải sử dụng hết 25450 hạt dẻ. Hỏi bàn cờ đó có bao nhiêu ô?
- Một cơ sở khoan giếng đưa ra định mức giá như sau: Giá từ mét khoan đầu tiên là 100000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 30000 đồng so với giá của mét khoan ngay trước đó.
- Cho tổng \( {S_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{n\left( {n + 1} \right)}} = \frac{n}{{n + 1}}{\mkern 1mu} {\mkern 1mu} \left( * \right)\). Mệnh đề nào đúng?
- Tìm tất cả các số nguyên dương n sao cho \(2^{n + 1} > n^2 + 3n. \)
- Một du khách vào trường đua ngựa đặt cược, lần đầu đặt 20000 đồng, mỗi lần sau tiền đặt gấp đôi lần tiền đặt cọc trước. Người đó thua 9 lần liên tiếp và thắng ở lần thứ 10. Hỏi du khác trên thắng hay thua bao nhiêu?
- Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nữa diện tích của mặt trên của tầng ngay bên dưới và diện tích mặt trên của tầng 1 bằng nửa diện tích của đế tháp (có diện tích là 12288 m2). Tính diện tích mặt trên cùng.
- Chu kì bán rã của nguyên tố phóng xạ poloni 210 là 138 ngày (nghĩa là sau 138 ngày khối lượng của nguyên tố đó chỉ còn một nửa). Tính (chính xác đến hàng phần trăm) khối lượng còn lại của 20 gam poloni 210 sau 7314 ngày (khoảng 20 năm).
- Tìm hiểu tiền công khoan giếng ở hai cơ sở khoan giếng, người ta được biết: