YOMEDIA
NONE

Bài tập 8.2 trang 96 SBT Toán 8 Tập 2

Giải bài 8.2 tr 96 sách BT Toán lớp 8 Tập 2

Tam giác ABC vuông tại A có đường cao AH = n = 10,85cm và cạnh AB = m = 12,5cm. Hãy tính độ dài các cạnh còn lại của tam giác (chính xác đến hai chữ số thập phân)

ATNETWORK

Hướng dẫn giải chi tiết

Hướng dẫn giải

Sử dụng:

- Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

- Định lí Pytago: Trong tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

Lời giải chi tiết

Xét hai tam giác \(ABC\) và \(HBA\) có:

\(\widehat {BAC} = \widehat {BHA} = 90^o\)

\(\widehat B\) chung

\( \Rightarrow ∆ ABC\) đồng dạng \(∆ HBA\) (g.g)

 \(\eqalign{  & \Rightarrow {{AB} \over {HB}} = {{AC} \over {HA}} = {{BC} \over {BA}}  \cr  &  \Rightarrow {m \over {HB}} = {{AC} \over n} = {{BC} \over m}  \cr  &  \Rightarrow AC = {{mn} \over {HB}};\;BC = {{{m^2}} \over {HB}} \cr} \)

Áp dụng định lí Pytago vào tam giác vuông \(ABH\), ta có:

\(A{B^2} = H{B^2} + A{H^2}\)

\( \Rightarrow HB = \sqrt {A{B^2} - A{H^2}}  = \sqrt {{m^2} - {n^2}} \)

Từ đó, ta có:

\(\displaystyle AC = {{m.n} \over {\sqrt {{m^2} - {n^2}} }};BC = {{{m^2}} \over {\sqrt {{m^2} - {n^2}} }}\)

Với \(m = 12,5cm; n = 10,85cm\) ta tính được:

\(AC ≈ 21,85cm; BC ≈ 25,17cm.\

-- Mod Toán 8 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 8.2 trang 96 SBT Toán 8 Tập 2 HAY thì click chia sẻ 
YOMEDIA
AANETWORK
 

 

YOMEDIA
ATNETWORK
ON