Giải Bài 2 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1
Cho hình chóp \(S.ABCD\), đáy \(ABCD\) là hình bình hành có \(O\) là giao điểm của hai đường chéo. Gọi \(M,N\) lần lượt là trung điểm của \(SA,SD\).
a) Chứng minh rằng \(\left( {OMN} \right)\parallel \left( {SBC} \right)\).
b) Gọi \(E\) là trung điểm của \(AB\) và \(F\) là một điểm thuộc \(ON\). Chứng minh \(EF\) song song với \(\left( {SBC} \right)\).
Hướng dẫn giải chi tiết Bài 2
Phương pháp giải
Sử dụng định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).
Lời giải chi tiết
a) \(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)
\(M\) là trung điểm của \(SA\)
\( \Rightarrow OM\) là đường trung bình của tam giác \(SAC\)
\(\left. \begin{array}{l} \Rightarrow OM\parallel SC\\SC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow OM\parallel \left( {SBC} \right)\)
\(O\) là trung điểm của \(B{\rm{D}}\) (theo tính chất hình bình hành)
\(N\) là trung điểm của \(SD\)
\( \Rightarrow ON\) là đường trung bình của tam giác \(SB{\rm{D}}\)
\(\left. \begin{array}{l} \Rightarrow ON\parallel SB\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow ON\parallel \left( {SBC} \right)\)
\(\left. \begin{array}{l}OM\parallel \left( {SBC} \right)\\ON\parallel \left( {SBC} \right)\\OM,ON \subset \left( {OMN} \right)\end{array} \right\} \Rightarrow \left( {OMN} \right)\parallel \left( {SBC} \right)\)
b) \(O\) là trung điểm của \(AC\) (theo tính chất hình bình hành)
\(E\) là trung điểm của \(AB\)
\( \Rightarrow OE\) là đường trung bình của tam giác \(ABC\)
\(\left. \begin{array}{l} \Rightarrow OE\parallel BC\\BC \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow OE\parallel \left( {SBC} \right)\)
Do \(\left( {OMN} \right)\parallel \left( {SBC} \right)\) nên \(E \in \left( {OMN} \right)\)
Ta có:
\(\left. \begin{array}{l}EF \subset \left( {OMN} \right)\\\left( {OMN} \right)\parallel \left( {SBC} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {SBC} \right)\
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.
Bài tập SGK khác
Vận dụng 3 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 1 trang 119 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 3 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 4 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 5 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Giải Bài 6 trang 120 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST
Bài tập 1 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 2 trang 127 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST
Bài tập 3 trang 128 SBT Toán 11 Tập 1 - CTST Chân trời sáng tạo
Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST