YOMEDIA
NONE

Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST

Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm của AB, CD. (P) là mặt phẳng đi qua MN và song song với mặt phẳng (SAD). Tìm giao tuyến của các mặt của hình chóp với mặt phẳng (P)?

ATNETWORK

Hướng dẫn giải chi tiết Bài tập 4

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và M, N lần lượt là trung điểm

Do M, N lần lượt là trung điểm của AB, CD nên MN // BC // AD.

Mà AD ⊂ (SAD) nên MN // (SAD).

Gọi E là trung điểm của SC.

Xét ∆SCD có N, E lần lượt là trung điểm của CD, SC.

Nên NE là đường trung bình của tam giác, suy ra NE // SD.

Mà SD ⊂ (SAD) nên NE // (SAD).

Ta có: MN // (SAD);

NE // (SAD);

MN ∩ NE = N trong (MNE).

Do đó (MNE) // (SAD).

Khi đó (MNE) chính là mặt phẳng (P).

Gọi F là trung điểm của SB, tương tự ta cũng có (MNEF) là mặt phẳng (P).

Vậy, (P) ∩ (ABCD) = MN với MN // BC // AD.

        (P) ∩ (SAB) = MF với MF // SA (F là trung điểm của SB).

        (P) ∩ (SDC) = NE với NE // SD (E là trung điểm của SC).

        (P) ∩ (SBC) = EF.

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 4 trang 128 SBT Toán 11 Tập 1 Chân trời sáng tạo - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON