YOMEDIA
NONE

Giải Bài 1 trang 50 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Giải Bài 1 trang 50 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST

Tìm \({u_2},{u_3}\) và dự đoán công thức số hạng tổng quát \({u_n}\) của dãy số:

\(\left\{ \begin{array}{l}{u_1} = 1\\{u_{n + 1}} = \frac{{{u_n}}}{{1 + {u_n}}}\left( {n \ge 1} \right)\end{array} \right.\)

ATNETWORK

Hướng dẫn giải chi tiết Bài 1

Phương pháp giải

‒ Lần lượt thay giá trị \(n = 1;2;3\) vào biểu thức \({u_{n + 1}}\).

‒ Tìm điểm chung của các số hạng của dãy số \(\left( {{u_n}} \right)\).

 

Lời giải chi tiết

Ta có:

\(\begin{array}{l}{u_2} = \frac{{{u_1}}}{{1 + {u_1}}} = \frac{1}{{1 + 1}} = \frac{1}{2}\\{u_3} = \frac{{{u_2}}}{{1 + {u_2}}} = \frac{{\frac{1}{2}}}{{1 + \frac{1}{2}}} = \frac{1}{3}\end{array}\)

Suy ra, \({u_n} = \frac{1}{n}\)

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Giải Bài 1 trang 50 SGK Toán 11 Chân trời sáng tạo tập 1 - CTST HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON