Bài tập 48 trang 117 SBT Toán 11 Tập 1 Cánh diều
Hình biểu diễn của hai đường thẳng cắt nhau có thể là hai đường thẳng song song được không? Vì sao?
Hướng dẫn giải chi tiết Bài tập 48
Giả sử hai đường thẳng \(a\) và \(b\) cắt nhau tại \(O\) và hình chiếu song song của \(a\), \(b\), \(O\) theo phương chiếu là đường thẳng bất kỳ \(c\) lần lượt là \(a'\), \(b'\), \(O'\).
Ta nhận xét rằng với mỗi điểm \(M \in a\) thì hình chiếu song song \(M'\) của \(M\) theo phương chiếu \(c\) cũng nằm trên \(a'\).
Do đó, vì \(O \in a\) nên ta có \(O' \in a'\).
Tương tự ta cũng có \(O' \in b'\). Như vậy \(a'\) và \(b'\) có điểm chung \(O'\), nên chúng không song song với nhau.
Vậy hình biểu diễn của hai đường thẳng cắt nhau không thể là hai đường thẳng song song.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.