Bài tập 14 trang 100 SBT Toán 11 Tập 1 Cánh diều
Cho hình chóp \(S.ABCD\) có đáy\(ABCD\) là hình bình hành. Gọi \(M\), \(N\),\(P\), \(Q\) lần lượt là trung điểm của \(SA\), \(SB\), \(SC\), \(SD\). Trong các đường thẳng sau, đường thẳng nào KHÔNG song song với \(NP\)?
A. \(MQ\)
B. \(BD\)
C. \(AD\)
D. \(BC\)
Hướng dẫn giải chi tiết Bài tập 14
Ta có: \(N\) là trung điểm của \(SB\), \(P\) là trung điểm của \(SC\), suy ra \(NP\) là đường trung bình của tam giác \(SBC\).
Từ đó ta có \(NP\parallel BC\). Chứng minh tương tự ta cũng có \(MQ\parallel AD\).
Do \(ABCD\) là hình bình hành, nên \(AD\parallel BC\).
Hai đường thẳng \(NP\) và \(AD\) phân biệt, cùng song song với \(BC\) nên chúng song song với nhau.
Mặt khác \(NP\) và \(MQ\) phân biệt, cùng song song với \(AD\) nên chúng song song với nhau.
Như vậy đường thẳng \(NP\) song song với các đường thẳng \(BC\), \(AD\), \(MQ\).
Đáp án cần chọn là đáp án B.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.