YOMEDIA
NONE

Bài 2 trang 63 SGK Toán 11 Tập 2 Cánh diều - CD

Bài 2 trang 63 SGK Toán 11 Tập 2 Cánh diều

Chứng minh rằng hàm số \(f(x) = \left| x \right|\) không có đạo hàm tại điểm \({x_0} = 0\), nhưng có đạo hàm tại mọi điểm \(x \ne 0\)?

ATNETWORK

Hướng dẫn giải chi tiết Bài 2

Ta có: \(y = \left| x \right| = \left\{ \begin{array}{l}x\,\,\,(x \ge 0)\\ - x\,\,\,(x < 0)\end{array} \right. \Rightarrow y' = \left\{ \begin{array}{l}1\,\,\,(x \ge 0)\\ - 1\,\,\,(x < 0)\end{array} \right.\)

Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} y' = 1 \ne - 1 = \mathop {\lim }\limits_{x \to {0^ - }} y'\)

Vậy không tồn tại đạo hàm của hàm số tại x = 0

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài 2 trang 63 SGK Toán 11 Tập 2 Cánh diều - CD HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON