Bài tập 8.13 trang 51 SBT Toán 11 Tập 2 Kết nối tri thức
Có 3 hộp I, II, III. Mỗi hộp chứa ba tấm thẻ đánh số 1, 2, 3. Từ mỗi hộp rút ngẫu nhiên một tấm thẻ. Xét các biến cố sau:
\(A\): "Tổng các số ghi trên ba tấm thẻ là 6"; \(B\): "Ba tấm thẻ có ghi số bằng nhau".
a) Tính \(P\left( A \right),P\left( B \right)\).
b) Hỏi \(A,B\) có độc lập không?
Hướng dẫn giải chi tiết Bài 8.13
a) Ta có: \({\rm{\Omega }} = \left\{ {\left( {a,b,c} \right):1 \le a,b,c \le 3} \right\},n\left( {\rm{\Omega }} \right) = 27\).
\(A = \left\{ {\left( {1,2,3} \right);\left( {2,1,3} \right);\left( {3,1,2} \right);\left( {1,3,2} \right);\left( {3,2,1} \right);\left( {2,3,1} \right);\left( {2,2,2} \right)} \right\},n\left( A \right) = 7\).
Suy ra \(P\left( A \right) = \frac{7}{{27}}\).
\(B = \left\{ {\left( {1,1,1} \right);\left( {2,2,2} \right);\left( {3,3,3} \right)} \right\},n\left( B \right) = 3\).
Suy ra \(P\left( B \right) = \frac{3}{{27}}\).
b) Ta có: \(A \cap B = \left\{ {\left( {2,2,2} \right)} \right\}\).
Vậy \(P\left( {AB} \right) = \frac{1}{{27}}\).
Vì \(P\left( {AB} \right) = \frac{1}{{27}} = \frac{{27}}{{{{27}^2}}} \ne \frac{{21}}{{{{27}^2}}} = \frac{7}{{27}} \cdot \frac{3}{{27}} = P\left( A \right) \cdot P\left( B \right)\) nên \(A\) và \(B\) không độc lập.
-- Mod Toán 11 HỌC247
Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.