YOMEDIA
NONE

Bài tập 5.23 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT

Bài tập 5.23 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức

Tìm tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}\;\;\;khi\;x < 1\\mx + 1\;\;khi\;x \ge 1\end{array} \right.\) liên tục trên \(\mathbb{R}\)?

ATNETWORK

Hướng dẫn giải chi tiết Bài 5.23

Ta có: \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 1} \right) = 2\);

\(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {mx + 1} \right) = m + 1 = f\left( 1 \right)\).

Để hàm số f(x) liên tục trên \(\mathbb{R}\) thì \(m + 1 = 2 \Leftrightarrow m = 1\).

-- Mod Toán 11 HỌC247

Nếu bạn thấy hướng dẫn giải Bài tập 5.23 trang 86 SBT Toán 11 Tập 1 Kết nối tri thức - KNTT HAY thì click chia sẻ 
YOMEDIA

Chưa có câu hỏi nào. Em hãy trở thành người đầu tiên đặt câu hỏi.

AANETWORK
 

 

YOMEDIA
NONE
ON