YOMEDIA
NONE

xác định số hữu tỉ a và b để đa thức x^3+ax+b

xác định số hữu tỉ a và b để đa thức x^3+ax+b chia hết cho đa thức x^2+x-2

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • do đa thức bị chia có bậc 3, đa thức chia có bậc 2 nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là\(x^3:x^2=x\)

    Gọi thương là \(x+c\), ta có:

    \(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\) \(^1\)

    =>\(x^3+ax+b=x^3+\left(c+1\right).x^2+\left(c-2\right)x-2c\) \(^2\)

    từ 1 và 2, suy ra:

    \(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)

    Vậy với a= -3 ; b=2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\), thương là x-1

      bởi Nguyễn Huỳnh Giao 21/07/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON