YOMEDIA
NONE

Tìm m để phương trình (m^2-4)x+m=2 có 1 nghiệm x=-1

Cho phương trình : (m2-4)x+m=2

a) Tìm m để phương trình có nghiệm x=-1

b) Giải và biện luận phương trình theo tham số m .

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a, Phương trình có nghiệm x=-1
    \(\Leftrightarrow\left(m^2-4\right).\left(-1\right)+m=2\)
    \(\Leftrightarrow-m^2+4+m-2=0\)
    \(\Leftrightarrow-m^2+m+2=0\)
    \(\Leftrightarrow m^2-m-2=0\)
    \(\Leftrightarrow\left(m-2\right)\left(m+1\right)=0\)
    \(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-1\end{matrix}\right.\)
    Vậy m=2 hoặc m=-1 thì pt có nghiệm x=-1

    b, Pt \(\Leftrightarrow\left(m^2-4\right)x=2-m\) (1)
    • Nếu m = 2 từ (1) => 0x=0
    => Pt có vô số nghiệm
    • Nếu m =-2 từ (1) => 0x=4
    => Pt vô nghiệm
    • Với \(m\ne\pm2\) thì \(m^2-4\ne0\), từ (1) ta có: \(x=\dfrac{2-m}{m^2-4}=\dfrac{2-m}{\left(m-2\right)\left(m+2\right)}=-\dfrac{1}{m+2}\)
    Vậy m=2 thì pt có vô số nghiệm;
    m= -2 thì pt vô nghiệm;
    \(m\ne\pm2\) thì pt có nghiệm duy nhất \(x=-\dfrac{1}{m+2}\)

      bởi Hoàng Hoàng 06/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON