YOMEDIA
NONE

Tìm GTLN của A=xy+yz+xz biết x+y+z=a

Cho \(x;y;z\ge0\)thỏa mãn điều kiện \(x+y+z=a\)

a, Tìm giá trị lớn nhất của \(A=xy+yz+xz\)

b, Tìm giá trị nhỏ nhất của \(B=x^2+y^2+z^2\)

@Nguyễn Quang : Giúp nốt bài này đuê

@Nguyễn Phương Trâm :giúp na mẹ eo

@tran trong bac: xem r thì cx giúp ná

m.ng eii helpp mee

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

    \(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

    \(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\)

    \(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

    \(\Leftrightarrow xy+yz+xz\le\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

    Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{a}{3}\)

    b) Áp dụng BĐT Bunyakovsky,ta có:

    \(\left(x^2+y^2+z^2\right)3\ge\left(x+y+z\right)^2\)

    \(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{a^2}{3}\)

    Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{a}{3}\)

      bởi chu thị thùy Linh 30/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON