YOMEDIA
NONE

Tìm điều kiện của \(x\) để giá trị của biểu thức được xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến: \(\displaystyle \left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right)\)\(:\displaystyle {{2x - 6} \over {{x^2} + 6x}} + {x \over {6 - x}}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(\displaystyle \left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right)\)\(:\displaystyle {{2x - 6} \over {{x^2} + 6x}} + {x \over {6 - x}}\)

    Biểu thức xác định khi \( {x^2} - 36 \ne 0,\) \({x^2} + 6x \ne 0,\) \(6 - x \ne 0,\) \(2x - 6 \ne 0  \)

    +) \({x^2} - 36 \ne 0 \Rightarrow \left( {x - 6} \right)\left( {x + 6} \right) \ne 0\)\( \Rightarrow x \ne 6\) và \(x \ne  - 6  \)

    +) \({x^2} + 6x \ne 0 \Rightarrow x\left( {x + 6} \right) \ne 0\)\( \Rightarrow x \ne 0\) và \(x \ne  - 6 \)

    +) \( 6 - x \ne 0 \Rightarrow x \ne 6  \);

    +) \( 2x - 6 \ne 0 \Rightarrow x \ne 3 \).

    Vậy \(x ≠ 0,\) \(x ≠ 3,\) \(x ≠ 6\) và \(x ≠ -6\) thì biểu thức xác định.

    Ta có : \(\displaystyle \left( {{x \over {{x^2} - 36}} - {{x - 6} \over {{x^2} + 6x}}} \right):{{2x - 6} \over {{x^2} + 6x}}\)\(  + \displaystyle {x \over {6 - x}}\)

    \(\displaystyle  = \left[ {{x \over {\left( {x + 6} \right)\left( {x - 6} \right)}} - {{x - 6} \over {x\left( {x + 6} \right)}}} \right]\)\(:\displaystyle {{2x - 6} \over {x\left( {x + 6} \right)}} + {x \over {6 - x}} \)\(\displaystyle  = {{{x^2} - {{\left( {x - 6} \right)}^2}} \over {x\left( {x + 6} \right)\left( {x - 6} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x - 3} \right)}}\)\(\displaystyle + {x \over {6 - x}}\)\(\displaystyle = {{{x^2} - {x^2} + 12x - 36} \over {x\left( {x + 6} \right)\left( {x - 6} \right)}}.{{x\left( {x + 6} \right)} \over {2\left( {x - 3} \right)}}\)\(\displaystyle + {x \over {6 - x}}\)\(\displaystyle  = {{12\left( {x - 3} \right)} \over {x - 6}}.{1 \over {2\left( {x - 3} \right)}} + {x \over {6 - x}}\)\(\displaystyle = {6 \over {x - 6}} - {x \over {x - 6}} = {{ - \left( {x - 6} \right)} \over {x - 6}} =  - 1 \)

    Vậy với điều kiện \(x ≠ 0,\) \(x ≠ 3,\) \(x ≠ 6\) và \(x ≠ -6\) thì biểu thức đã cho không phụ thuộc biến \(x.\)

      bởi Tieu Giao 06/02/2021
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON