YOMEDIA
NONE

Gọi H là trực tâm tam giác ABC; D, E, F lần lượt là trung điểm của BH, CH, AH. Chứng minh DN = ME

Cho tam giác ABC nhọn, M, N, P lần lượt là trung điểm của các cạnh AB, AC và BC.

1. Các tứ giác BMNC và BMNP là hình gì? Tại sao?

2. Gọi H là trực tâm tam giác ABC; D, E, F lần lượt là trung điểm của BH, CH, AH. Chứng minh DN = ME.

3. Gọi O là giao điểm ME và DN. Chứng minh ba điểm P, O, F thẳng hàng.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • A B C M N P F D E H O K N

    Giải:

    a, MN là đường trung bình tam giác ABC

    \(\Rightarrow\)MN // BC (1)

    \(\Rightarrow BMNC\) là hình thang

    NP là đường trung bình tam giác ABC

    \(\Rightarrow\)NP // AB (2)

    Từ (1), (2) \(\Rightarrow BMNP\) là hình bình hành

    b, Gọi giao điểm của AH với MN, DE lần lượt là K, N

    MD là đường trung bình tam giác ABH

    => MD // AH và \(MD=\dfrac{1}{2}AH\)

    Tương tự => NE // AH và \(NE=\dfrac{1}{2}AH\)

    => MD // NE và MD = NE

    => MNED là hình bình hành (*)

    Dễ thấy \(\widehat{MKN}=\widehat{KND}=90^o\)

    MK // AH \(\Rightarrow\widehat{KMD}=90^o\) (**)

    Từ (*) và (**) \(\Rightarrow MNED\) là hình chữ nhật

    \(\Rightarrow DN=ME\)

      bởi Lê Huyền Trâm Trâm 31/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON