YOMEDIA
NONE

Giải phương trình 2x^4-5x^3-27x^2+25x+50=0

giải phương trình:

\(2x^4-5x^3-27x^2+25x+50=0\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bài này ko dễ đâu:\(2x^4-5x^3-27x^2+25x+50=0\) (1)

    Ta kiểm tra, hiển nhiên \(x=0\) ko phải là nghiệm của phương trình

    Ta có: Phương trình (1) tương đương:

    \(2x^2\left(x^2-\dfrac{5}{2}x-\dfrac{27}{2}+\dfrac{25}{2x}+\dfrac{25}{x^2}\right)=0\) (2)

    Ta đặt \(x-\dfrac{5}{x}=y\) thì \(x^2+\dfrac{25}{x^2}=y^2+10\) thế vào phương trình:

    (2) \(\Leftrightarrow2x^2[\left(x^2+\dfrac{25}{x^2}\right)-\dfrac{5}{2}\left(x-\dfrac{5}{x}\right)-\dfrac{27}{2}]=0\)

    \(\Leftrightarrow2x^2[\left(y^2+10\right)-\dfrac{5}{2}y-\dfrac{27}{2}]=0\)

    \(\Leftrightarrow y^2-\dfrac{5}{2}y-\dfrac{7}{2}=0\Leftrightarrow\left[{}\begin{matrix}y=3,5\\y=-1\end{matrix}\right.\)

    Trường hợp \(y=3,5\Leftrightarrow x-\dfrac{5}{x}=3,5\Leftrightarrow x^2-3,5x-5=0\)

    \(\Delta=b^2-4ac=32,25>0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3.5+\sqrt{32,25}}{2}\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{3,5-\sqrt{32,25}}{2}\end{matrix}\right.\)

    Trường hợp \(y=-1\Leftrightarrow x-\dfrac{5}{x}=-1\)\(\Leftrightarrow x^2+x-5=0\)

    \(\Delta=b^2-4ac=21>0\)

    \(\Leftrightarrow\left[{}\begin{matrix}x_3=\dfrac{-b+\sqrt{\Delta}}{2}=\dfrac{3.5+\sqrt{21}}{2}\\x_4=\dfrac{-b-\sqrt{\Delta}}{2}=\dfrac{3.5-\sqrt{21}}{2}\end{matrix}\right.\)

    Sao toàn ra nghiệm vô tỉ thế này? ko bt đúng ko đây? Các bn tự kiểm tra và sửa lỗi cho mk vs nhé!

      bởi Nguyễn Rose 26/12/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON