YOMEDIA
NONE

Chứng minh x^4-x^3+3x^2+8x+4=0 vô nghiệm

Cmr: x4-x3+3x2+8x+4=0 vô nghiệm

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Lời giải:

    Với những bài toán này ta nghĩ ngay đến việc tách ghép thành bình phương của một số để chỉ ra biểu thức lớn hơn, hoặc nhỏ hơn 0

    Xét PT: \(x^4-x^3+3x^2+8x+4=0\)

    \(\Leftrightarrow 4x^4-4x^3+12x^2+32x+16=0\)

    \(\Leftrightarrow (4x^4+x^2+1-4x^3+2x-4x^2)+15x^2+30x+15=0\)

    \(\Leftrightarrow (2x^2-x-1)^2+15(x+1)^2=0(*)\)

    Có: \(\left\{\begin{matrix} (2x^2-x-1)^2\geq 0\\ (x+1)^2\geq 0\end{matrix}\right.\forall x\in\mathbb{R}\)

    Do đó: \((*)\) xảy ra khi mà : \(\left\{\begin{matrix} 2x^2-x-1=0\\ x+1=0\end{matrix}\right.\Rightarrow 2(-1)^2-(-1)-1=0\)

    \(\Leftrightarrow 2=0\) (VL)

    Do đó PT vô nghiệm.

      bởi Nguyễn Lê Hùng 19/09/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON