RANDOM
IN_IMAGE

Chứng minh X + 1/X ≥ 2

CM CÁC BẤT ĐẲNG THỨC SAU

A) \(X+\dfrac{1}{X}\ge2\) (X>0)

B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)

Theo dõi Vi phạm
RANDOM

Trả lời (1)

 
 
 
  • Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

    Ta có: \(\left(m-n\right)^2\ge0\)

    <=> \(m^2-2m.n+n^2\ge0\)

    <=> \(m^2+2m.n+n^2-4m.n\ge0\)

    <=> \(\left(m+n\right)^2\ge4m.n\)

    => \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

    a, Áp dụng BĐT côsi ta có:

    \(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

    vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

    b, Áp dụng BĐT côsi ta có:

    \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

    vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

    -----------Chúc bạn học tốt hehe-------------

      bởi Nguyễn Kim Thoa 29/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy

Các câu hỏi có liên quan

 

AMBIENT
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 304_1605583707.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/thptqg/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-11-30 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

    [1] => Array
        (
            [banner_picture] => 202_1605583688.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-11-02 00:00:00
            [banner_enddate] => 2020-11-30 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)