YOMEDIA
NONE

Chứng minh X + 1/X ≥ 2

CM CÁC BẤT ĐẲNG THỨC SAU

A) \(X+\dfrac{1}{X}\ge2\) (X>0)

B) \(\dfrac{A}{B}+\dfrac{B}{A}\ge2\) (AB>0)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Bạn hỏi câu này có lẽ bạn chưa biết BĐT côsi, mk sẽ trình bày từ bước chứng minh BĐT

    Ta có: \(\left(m-n\right)^2\ge0\)

    <=> \(m^2-2m.n+n^2\ge0\)

    <=> \(m^2+2m.n+n^2-4m.n\ge0\)

    <=> \(\left(m+n\right)^2\ge4m.n\)

    => \(m+n\ge2\sqrt{m.n}\) ( BĐT côsi)

    a, Áp dụng BĐT côsi ta có:

    \(\dfrac{1}{x}+x\ge2\sqrt{\dfrac{1}{x}.x}=2\)

    vậy \(\dfrac{1}{x}+x\ge2\) (x>0)

    b, Áp dụng BĐT côsi ta có:

    \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

    vậy \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với a, b >0

    -----------Chúc bạn học tốt hehe-------------

      bởi Nguyễn Kim Thoa 29/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON