YOMEDIA
NONE

Chứng minh với mọi số a và b lớn hơn 0 luôn có bất đẳng thức

Chứng minh với mọi số a và b lớn hơn 0, ta luôn được:

\(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • *đây là cách không áp dụng bất đẳng thức nào nhé*

    Ta có: \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

    \(=\dfrac{a}{a}+\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{b}\)

    \(=2+\dfrac{a}{b}+\dfrac{b}{a}\)

    Xét \(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2-2ab+b^2}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\)

    do \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\a>0,b>0\Rightarrow ab>0\end{matrix}\right.\)

    \(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)

    \(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

    Cộng 2 vế của \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) với 2, ta được

    \(2+\dfrac{a}{b}+\dfrac{b}{a}\ge4\)

    \(\Rightarrow\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\)

      bởi Thu Hằng Hoàng 31/12/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
NONE
ON