YOMEDIA
NONE

Chứng minh với \(\forall n\in N\)* thì

Chứng minh với \(\forall n\in N\)* thì \(1^3+2^3+3^3+...+n^3=\left[\frac{n\left(n+1\right)^{ }}{2}\right]^2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)(*)

    Với \(n=1;n=2\) (*) đúng

    Giả sử (*) đúng với n=k khi đó (*) thành

    \(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

    Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành

    \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

    Cần chứng minh (1) đúng, mặt khác ta lại có

    \(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

    Đẳng thức cần chứng minh tương đương với

    \(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

    \(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

    \(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

    Theo nguyên lý quy nạp ta có đpcm

    Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

      bởi Hoàng Thị Thùy Dương 03/05/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON