YOMEDIA
NONE

Chứng minh tam giác DHK đồng dạng với tam giác DBH

Cho tam giác DBC có DH là đường cao . Vẽ HE vuông góc DC tại E , HK vuông góc DB tại K a) CMR : Tam giác DHK đồng dạng với tam giác DBH b) CM : HE2 = ED.EC c) CM : DK.DB=DE.DC

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a) Xét ΔDHK và ΔDBH:

    ∠K1 = ∠DHB (= 90°)

    ∠D1 : chung

    => ΔDHK ~ ΔDBH (g.g).

    b) Xét ΔDEH vuông tại E:

    ∠H1 = ∠E1 - ∠D2 = 90° - ∠D2

    Tương tự: ∠C = 90° - ∠D2

    => ∠H1 = ∠C

    Xét ΔDEH và ΔHEC:

    ∠E1 = ∠E2 (= 90°)

    ∠H1 = ∠C (CMT)

    => ΔDEH ~ ΔHEC (g.g)

    => \(\dfrac{DE}{EH} = \dfrac{HE}{EC}\) (c.t.ứ) => EH2 = ED.EC.

    c) Ta có: ΔDHK ~ ΔDBH (CM phần a))

    =>\(\dfrac{DK}{DH} = \dfrac{DH}{DB} \) (c.t.ứ) => DH2 = DK.DB

    Tương tự: ΔDEH ~ ΔDHC => DH2 = DE.EC

    => DK.DB = DE.EC (= DH2). D B C H K E 1 2 1 2 1 2 1 2

      bởi Trường Xuân 01/06/2019
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON