YOMEDIA
NONE

Chứng minh DB góc C

1. Cho hình thang ABCD ( AB//CD, AB<CD). Chứng minh rằng: DC-AB. giá trị tuyệt đối của AD-BC

2. Cho hình thang ABCD (AB//CD, AB<CD) có góc D > góc C. CMR: DB<CA

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 2, Tự vẽ hình nha bạn :

    Trên nửa mặt phẳng bờ \(CD\) có chứa điểm \(A\) , vẽ tia \(Cx\) sao cho \(\widehat{DCx}=\widehat{ADC}\) , \(Cx\) cắt \(AB\) tại \(E\)

    Ta có : \(\widehat{DCB}< \widehat{ADC}\left(gt\right)\)

    \(\Rightarrow\widehat{DCB}=\widehat{DCx}\)

    \(\Rightarrow\) Tia \(CB\) nằm giữa hai tia \(CD\)\(CE\)

    \(\Rightarrow\) Điểm \(B\) nằm giữa 2 điểm \(A\)\(E\)

    Tứ giác : \(AECD\) có : \(AE//CD\)\(\widehat{ADC}=\widehat{DCE}\)

    \(\Rightarrow\)\(AECD\) là hình thang cân

    \(\Rightarrow\Delta ADE=\Delta ECA\left(c-g-c\right)\) ( TỰ CHỨNG MINH NHÉ )

    \(\Rightarrow\widehat{AED}=\widehat{CAE}\)

    Gọi \(O\) là giao điểm của\(AC\)\(BD\)

    \(\Delta OAB\)\(\widehat{DBE}\) là góc ngoài

    \(\Rightarrow\widehat{DBE}>\widehat{OAB}\)

    \(\Rightarrow\widehat{DBE}>\widehat{BED}\)

    \(\Delta BOE\) có : \(\widehat{DBE}>\widehat{BEC}\)

    \(\Rightarrow DE>BD\)

    \(DE=AC\)

    \(\Rightarrow AC>BD\left(dpcm\right)\)

      bởi Vương Thiên Băng 16/06/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON