YOMEDIA
NONE

Chứng minh A = x^4 + x^2 + 2 luôn dương

1. C/m rằng các biểu thức sau luôn có giá trị dương với mọi x \(\in\) R :

a) A = x 4 + x2 + 2

b) B = ( x + 3 ).( x - 11 ) + 2018

2. Tìm Min hoặc Max :

a) A = x2 + 3x + 7

b) B = 11 - 10x - x2

c) \(\left|x-4\right|\) . ( 2 - \(\left|x-4\right|\) )

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 1. a) Ta có: x4 \(\ge\) 0 và x2 \(\ge\) 0 (với mọi x nên suy ra x4+x2+2\(\ge\)0 (với mọi x \(\in\) R)

    Vậy giá trị của biểu thức A luôn có giá trị dương với mọi x \(\in\) R.

    b) Ta có: B = (x + 3).(x - 11) + 2018 = x2-11x+3x-33+2018

    \(\Leftrightarrow\)
    B = x2-8x+1985 = x2-2.4.x+42+1969

    \(\Leftrightarrow\) B = (x-4)2+1969

    Vì (x-4)2\(\ge\) 0 nên suy ra (x-4)2+1969 \(\ge\) 1969

    Vậy giá trị của biểu thức B luôn có giá trị dương với mọi x \(\in\) R.

      bởi Nguyễn Xuân Tùng 05/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON