RANDOM

Chứng minh A=n^3(n^2- 7)^2 – 36n chia hết cho 5040 với mọi số tự nhiên n

Theo dõi Vi phạm
ADSENSE

Trả lời (1)

 
 
 
  • Ta có 5040 = 24. 32.5.7

    A= n3(n2- 7)2 – 36n = n.[ n2(n2-7)2 – 36 ] = n. [n.(n2-7 ) -6].[n.(n2-7 ) +6]

     = n.(n3-7n – 6).(n3-7n +6)

    Ta lại có n3-7n – 6 = n+ n2 –n2 –n – 6n -6 = n2.(n+1)- n (n+1) -6(n+1)

    = (n+1)(n2-n-6)= (n+1 )(n+2) (n-3)

    Tương tự : n3-7n+6 = (n-1) (n-2)(n+3) d

    Do đó A= (n-3)(n-2) (n-1) n (n+1) (n+2) (n+3)

    Ta thấy: A là tích của 7 số nguyên liên tiếp mà trong 7 số nguyên liên tiếp:

    • Tồn tại một bội số của 5 (nên A \( \vdots \) 5 )
    • Tồn tại một bội của 7 (nên A \( \vdots \) 7 )
    • Tồn tại hai bội của 3 (nên A \( \vdots \) 9 )
    • Tồn tại 3 bội của 2 trong đó có bội của 4 (nên A \( \vdots \) 16)

    Vậy A chia hết cho 5, 7,9,16 đôi một nguyên tố cùng nhau \( \Rightarrow \) A \( \vdots \)5.7.9.16= 5040

      bởi Trịnh Lan Trinh 31/05/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Mời gia nhập Biệt đội Ninja247

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
YOMEDIA

Video HD đặt và trả lời câu hỏi - Tích lũy điểm thưởng

Các câu hỏi có liên quan

 

YOMEDIA
1=>1
Array
(
    [0] => Array
        (
            [banner_picture] => 4_1603079338.jpg
            [banner_picture2] => 
            [banner_picture3] => 
            [banner_picture4] => 
            [banner_picture5] => 
            [banner_link] => https://tracnghiem.net/de-kiem-tra/?utm_source=Hoc247&utm_medium=Banner&utm_campaign=PopupPC
            [banner_startdate] => 2020-10-19 00:00:00
            [banner_enddate] => 2020-10-31 23:59:00
            [banner_embed] => 
            [banner_date] => 
            [banner_time] => 
        )

)