YOMEDIA
NONE

Chứng minh a+b>=d^2, biết d là UCLN của a và b

Cho a , b là số tự nhiên thỏa mãn điều kiện : \(\dfrac{a+1}{b}+\dfrac{b+1}{a}\) là số tự nhiên . Chứng minh a+b>=d^2, biết d là UCLN của a và b

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Gọi \(ƯCLN\left(a;b\right)=d\) \(\Rightarrow a^2;b^2;ab\) cùng chia hết cho \(d^2\)

    Do : \(\dfrac{a+1}{b}+\dfrac{b+1}{a}=\dfrac{a^2+b^2+a+b}{ab}\) là số tự nhiên nên :

    \(a^2+b^2+a+b\) cũng chia hết cho \(d^2\)

    \(\Rightarrow m+n⋮d^2\Rightarrow m+n\ge d^2\left(đpcm\right)\)

      bởi phạm thị thúy kiều 01/01/2020
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON