YOMEDIA
NONE

Cho x,y là số hữu tỉ khác 1 thỏa

Cho x,y là số hữu tỉ khác 1 thỏa mãn(1-2x)/(1-x)+(1-2y)/(1-y)=1

Chứng minh: M=x^2+y^2-xy là bình phương của một số hữu tỉ

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • ta có : \(\dfrac{1-2x}{1-x}+\dfrac{1-2y}{1-y}=1\Leftrightarrow3xy-2x-2y+1=0\)

    \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left(đpcm\right)\)

    phương trình này hình như chỉ có 2 nghiệm này là hữu tỉ thôi phải không , nếu ai phát hiện còn nữa nói cho mk bt nha .

      bởi Nguyễn Thái Bảo 08/05/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON