YOMEDIA
NONE

Cho tam giác ABC, gọi M là một điểm nằm bên

Cho tam giác ABC, gọi M là một điểm nằm bên trong tam giác . các đường thẳng AM, BM, CM lần lượt cắt các cạnh BC, CA, AB tại D, E, F. Tìm giá trị nhỏ nhất của biểu thức:

P = \(\sqrt{\dfrac{AM}{MD}}+\sqrt{\dfrac{BM}{ME}}+\sqrt{\dfrac{CM}{MF}}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • Ôn tập chương II - Đa giác. Diện tích đa giác

    • Đặt \(S_{MBC}=S_1;S_{MAC}=S_2;S_{MAB}=S_3\)

    • Dựng \(AH\perp BC\text{ và }MK\perp BC\)

    ⇒ AH // MK

    \(\Rightarrow\dfrac{AD}{MD}=\dfrac{AH}{MK}=\dfrac{\dfrac{1}{2}\times AH\times BC}{\dfrac{1}{2}\times MK\times BC}=\dfrac{S_{ABC}}{S_1}\)

    \(\Rightarrow\dfrac{AM}{MD}=\dfrac{AD}{MD}-1=\dfrac{S_{ABC}}{S_1}-1=\dfrac{S_2+S_3}{S_1}\)

    \(\Rightarrow\sqrt{\dfrac{AM}{MD}}=\sqrt{\dfrac{S_2+S_3}{S_1}}\)

    • Tương tự, ta cũng có: \(\sqrt{\dfrac{BM}{ME}}=\sqrt{\dfrac{S_1+S_3}{S_2}};\sqrt{\dfrac{CM}{MF}}=\sqrt{\dfrac{S_1+S_2}{S_3}}\)

    • Áp dụng bất đẳng thức AM - GM, ta có:

    \(P=\sqrt{\dfrac{S_2+S_3}{S_1}}+\sqrt{\dfrac{S_1+S_3}{S_2}}+\sqrt{\dfrac{S_2+S_1}{S_3}}\)

    \(\ge3\sqrt[6]{\dfrac{S_2+S_3}{S_1}\times\dfrac{S_1+S_3}{S_2}\times\dfrac{S_2+S_1}{S_3}}\)

    \(\ge3\sqrt[6]{\dfrac{2\sqrt{S_2S_3}}{S_1}\times\dfrac{2\sqrt{S_1S_3}}{S_2}\times\dfrac{2\sqrt{S_2S_1}}{S_3}}=3\sqrt{2}\)

    • Dấu "=" xảy ra khi \(S_1=S_2=S_3\)

    ⇔ M là trọng tâm của ΔABC.

      bởi Nguyen Huu-Khang 23/05/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON