YOMEDIA
NONE

Câu 3: (4điểm)Chứng minh rằng a)

Câu 3: (4điểm)Chứng minh rằng

a) \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) biết abc=1

b)\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a)Đặt \(T=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\) (*)

    Từ \(abc=1\Rightarrow c=\frac{1}{ab}\).Thay vào (*) ta có:

    \(T=\frac{1}{1+a+ab}+\frac{1}{1+b+\frac{1}{a}}+\frac{1}{1+\frac{1}{ab}+\frac{1}{b}}\)

    \(=\frac{1}{1+a+ab}+\frac{1}{\frac{a+ab+1}{a}}+\frac{1}{\frac{ab+1+a}{ab}}\)

    \(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{a+ab+1}\)

    \(=\frac{a+ab+1}{a+ab+1}=1=VP\) (Đpcm)

    b)Áp dụng Bđt Cô-si ta có:

    \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\)

    \(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{b^2}{c^2}\cdot\frac{c^2}{a^2}}=\frac{2b}{a}\)

    \(\frac{a^2}{b^2}+\frac{c^2}{a^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{c^2}{a^2}}=\frac{2c}{b}\)

    Cộng theo vế ta có:

    \(\frac{2a^2}{b^2}+\frac{2b^2}{c^2}+\frac{2c^2}{a^2}\ge\frac{2a}{c}+\frac{2b}{a}+\frac{2c}{b}\)

    \(\Leftrightarrow2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\right)\)

    \(\Leftrightarrow\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\) (Đpcm)

    Dấu = khi a=b=c

     

      bởi Hồ Nhật Linh 29/05/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON