YOMEDIA
NONE

a) Cho a, b, c > 0. Chứng minh nếu \(\frac{a}{b}< 1\) thì

a) Cho a, b, c > 0. Chứng minh nếu \(\frac{a}{b}< 1\) thì \(\frac{a+c}{b+c}>\frac{a}{b}\)

b) a, b, c là cạnh tam giác. Chứng minh \(1< \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • a)

    đúng rồi cái này phải chứng minh: hôm trước gặp câu lớp 6 lấy kết quả luôn mới ÁC.

    \(\frac{a+c}{b+c}>\frac{a}{b}\Leftrightarrow\frac{a+c}{b+c}-\frac{a}{b}>0\Leftrightarrow\frac{\left(a+c\right)b-a\left(b+c\right)}{\left(b+c\right)b}>0\Leftrightarrow\frac{bc-ac}{\left(b+c\right)b}>0\Leftrightarrow\frac{c\left(b-a\right)}{\left(b+c\right)b}>0\) (*)

    Theo đầu bài ta có: \(\left\{\begin{matrix}a,b,c>0\\\frac{a}{b}< 1\end{matrix}\right.\Rightarrow\left\{\begin{matrix}\left(b+c\right)b>0\\a< b\Rightarrow b-a>0\end{matrix}\right.\)=> (*) đúng mọi biến đổi là tương đương => dpcm

      bởi Nguyễn Hà 02/05/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON