YOMEDIA
NONE

1/ Cho a,b,c,d >0 Tìm GTNN

1/ Cho a,b,c,d >0 Tìm GTNN

\(A=\dfrac{a}{2b+9c+1945d}+\dfrac{b}{2c+9d+1945a}+\dfrac{c}{2d+9a+1945b}+\dfrac{d}{2a+9b+1945c}\)

2/Cho a;b;c>0 Tm a+b+c=1 Tìm GTNN

\(B=\dfrac{1}{a^2+b^2+c^2}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)

Giups đc bài nào giúp nha! Thanks

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 2,

    ÁP dụng bđt phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\)(Tự cm) ta có

    \(B\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ac}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ac\right)}+\dfrac{7}{ab+bc+ac}\)

    Tiếp tục sử dụng bđt \(\dfrac{a^2}{x}+\dfrac{b^2}{y}\ge\dfrac{\left(a+b\right)^2}{x+y}\)

    \(\Rightarrow B\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{7}{ab+bc+ac}=9+\dfrac{7}{ab+bc+ac}\)

    SD bđt phụ \(a^2+b^2+c^2\ge ab+bc+ac\)

    \(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

    \(\Rightarrow ab+bc+ac\le\dfrac{1}{3}\)

    \(\Rightarrow\dfrac{7}{ab+bc+ac}\ge21\)

    Do đo \(B\ge21+9=30\)

    Dấu bằng xảy ra khi \(a=b=c=\dfrac{1}{3}\)

      bởi Vũ Hồng Hạnh 13/02/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON