YOMEDIA
NONE

Chứng minh A=2^2016-1 chia hết cho 105

1. Cho A = \(2^{2016}-1\) . Chứng minh rằng A chia hết cho 105.

2.Chứng minh rằng \(5^{2017}+7^{2015}\) chia hết cho 12.

3. Chứng minh rằng B = \(3^{2^{2n}}+10\) chia hết cho 13.

4. Chứng minh rằng C = \(3^{2^{4n+1}}+2^{3^{4n+1}}+5\) luôn chia hết cho 22.

Theo dõi Vi phạm
ATNETWORK

Trả lời (1)

  • 1. \(A=2^{2016}-1\)

    \(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)

    \(2^{2016}=\left(2^4\right)^{504}=16^{504}\)

    16 chia 5 dư 1 nên 16^504 chia 5 dư 1

    => 16^504-1 chia hết cho 5

    hay A chia hết cho 5

    \(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)

    lý luận TT trg hợp A chia hết cho 5

    (3;5;7)=1 = > A chia hết cho 105

    2;3;4 TT ạ !!

      bởi Ngọc Mei 17/11/2018
    Like (0) Báo cáo sai phạm

Nếu bạn hỏi, bạn chỉ thu về một câu trả lời.
Nhưng khi bạn suy nghĩ trả lời, bạn sẽ thu về gấp bội!

Lưu ý: Các trường hợp cố tình spam câu trả lời hoặc bị báo xấu trên 5 lần sẽ bị khóa tài khoản

Gửi câu trả lời Hủy
 
NONE

Các câu hỏi mới

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON