-
Câu hỏi:
1. Tính tổng \(S = 2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4 + ... + n(n - 1)C_n^n\)
2. Chọn ngẫu nhiên một số tự nhiên có sáu chữ số khác nhau. Tính xác suất để chọn được một số có 3 chữ số chẵn và 3 chữ số lẻ.
Lời giải tham khảo:
1. \(S = 2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4 + ... + n(n - 1)C_n^n\)
Số hạng tổng quát:
\(\begin{array}{l}
{u_k} = k\left( {k - 1} \right)C_n^k = k\left( {k - 1} \right)\frac{{n!}}{{k!\left( {n - k} \right)!}}\\
= \frac{{n\left( {n - 1} \right)\left( {n - 2} \right)!}}{{\left( {k - 2} \right)!\left[ {\left( {n - 2} \right)! - \left( {k - 2} \right)!} \right]}}\\
= n\left( {n - 1} \right)C_{n - 2}^{k - 2}\left( {2 \le k \le n} \right)
\end{array}\)\(S = n\left( {n - 1} \right)\left( {C_{n - 2}^0 + C_{n - 2}^1 + ... + C_{n - 2}^{n - 2}} \right) = n\left( {n - 1} \right){2^{n - 2}}\)
2. Số phần tử của không gian mẫu: \({n_\Omega } = A_{10}^6 - A_9^5 = 136080\)
Số các số tự nhiên có 6 chữ số có3 chữ số chẵn và 3 chữ số lẻ là :
TH1: (số tạo thành không chứa số 0)
+ Lấy ra 3 số chẵn có: \(C_4^3\)
+ Lấy ra 3 số lẻ có: \(C_4^5\)
+ Số các hoán vị của 6 số trên: 6!
Suy ra số các số tạo thành: \(C_4^3.C_5^3.6! = 28800\)
TH2: (số tạo thành có số 0)
+ Lấy ra hai số chẵn khác 0: \(C_4^2\)
+ Lấy ra 3 số lẻ: \(C_5^3\)
+ Số các hoán vị không có số) đứng đầu: \(6! - 5! = 5.5!\)
Số các số tạo thành: \(C_4^2.C_5^3.5.5! = 36000\)
Gọi biến cố A: “số đuợc chọn có 3 chữ số chẵn và 3 chữ số lẻ”
Suy ra : \({n_A} = 28800 + 36000 = 64800\)
Xác suất xảy ra biến cố A: \({P_A} = \frac{{{n_A}}}{{{n_\Omega }}} = \frac{{64800}}{{136080}} = \frac{{10}}{{21}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Giải phương trình \(2{\cos ^2}\left( {\frac{\pi }{4} - 2x} \right) + \sqrt 3 \cos 4x = 4{\cos ^2}x - 1\)
- Tính tổng \(S = 2.1C_n^2 + 3.2C_n^3 + 4.3C_n^4 + ... + n(n - 1)C_n^n\)
- Tìm \(\lim \frac{{\sqrt {{n^2} + n} - n}}{{\sqrt {4{n^2} + 3n} - 2n}}\)
- Trong mặt phẳng Oxy, cho tam giác ABC có đỉnh A(3;4), B(1;2), đỉnh C thuộc đường thẳng \(d:{\rm{ }}x{\rm{ }} + {\rm{ }}2y{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\), trọng tâm G. Biết diện tích tam giác GAB bằng 3 đơn vị diện tích, hãy tìm tọa độ đỉnh C.
- Tìm thiết diện của hình chóp khi cắt bởi mp (P) biết hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD = a , AB = b.