YOMEDIA
NONE
  • Câu hỏi:

    Người ta trồng 3003 cây theo dạng hình tam giác như sau: Hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ 3 trồng 3 cây, …, cứ tiếp tục trồng như thế cho đến khi hết số cây. Số hàng cây trồng được là?

    • A. 79 hàng
    • B. 78 hàng
    • C. 80 hàng
    • D. 77 hàng

    Lời giải tham khảo:

    Đáp án đúng: D

    Gọi số cây ở hàng thứ n là \({u_n}\). Ta có: \({u_1} = 1,{u_2} = 2,{u_3} = 3,...,\) và \(S = {u_1} + {u_2} + {u_3} + ... + {u_n} = 3003\)

    Nhận thấy dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có số hạng đầu \({u_1} = 1,\) công sai \(d = 1\).

    Do đó, \({S_n} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right]n}}{2} = 3003 \Leftrightarrow \frac{{n\left[ {2.1 + \left( {n - 1} \right).1} \right]}}{2} = 3003\)

    \( \Leftrightarrow n\left( {n + 1} \right) = 6006 \Leftrightarrow {n^2} + n - 6006 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 77\\n = - 78\left( L \right)\end{array} \right. \Leftrightarrow n = 77\)

    Vậy số hàng cây trồng được là 77 hàng.

    Đáp án D

    ATNETWORK

Mã câu hỏi: 454858

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

 
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

 

 

CÂU HỎI KHÁC

AANETWORK
 

 

YOMEDIA
ATNETWORK
ON